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Abstract–Today micro-controllers and signal 
processors are the standard-implementing platform 
for  embedded controllers. But often their  
per formance can not keep pace with requirements 
for  demanding applications, for  example in 
mechatronic systems. Usually, in this case the micro-
controller  is replaced by a faster  one. But this 
doesn’ t avoid software problems ar ising in realtime 
applications even by using high level languages and 
always by using assembler  language. Fur ther  
problems are concerned with higher  clock 
frequencies and energy consumption.  
On the other  hand FPGAs are very well suited for  
high speed applications, because information 
processing can be per formed in parallel. But they 
usually lack common mathematical function 
librar ies, so that control and filter  algor ithms have to 
be implemented in a time consuming and expensive 
process.  
Today’s FPGAs offer  a huge number  of gates, so  
that even a processor  core can be implemented 
inside. This enables a combination of hardware and 
software signal processing within only one IC. 
Thereby the available software can be used fur ther  
on and only some algor ithms requir ing high 
per formance have to be implemented in hardware. 
Fur thermore some aspects of reconfigurable 
computing are treated. 

1 Introduction 

The rapid development of microelectronics in general 
and of programmable logic devices (FPGAs and 
CPLDs) in special, opens completely new possibilities 
of digital implementation of control and signal 
processing in embedded systems. The success of 
microcontrollers and digital signal processors was 
characterized by an efficient hardware combined with 
flexible and adaptable software structures. The strength 
of programmable logic devices is given by flexible and 
very fast hardware structures. Together these 
technologies show the way in a new era of 
reconfigurable controllers. These allow the adaptation 
of hardware-based controllers to specific operating 
conditions by changing the hardware configuration 
during operation time by which the necessary number of 
gates and the power demand is reduced. A good 

overview of the potentials and implementation aspects 
of reconfigurable computing is given in [1], [2].  
Some dedicated considerations emphasize the 
parallelizing at block level and serializing at signal 
level in [2], which lead to very efficient solutions.  

The development of universal, usable dynamically 
reconfigurable computer architectures introduces a 
number of difficult questions. The dynamic 
reconfiguration of the system is enabled by exchange of 
some components during run time. Besides, 
reconfiguration often requires some kind of operating 
system which controls and supervises the 
reconfiguration process. 

The base for the reconfiguration process is build by 
FPGA configuration files, which represent the resources 
needed by an application. They are used for a dynamic 
allocation of required resources. Indeed, the 
reconfiguration ability  also causes costs. Generally, for 
the solution of a problem several tasks are necessary. 
Therefore it is to be ensured that all these tasks can be 
loaded and linked at the same time. 

However hardware implementation isn’ t a general 
solution at all. Since sequential algorithms can be better 
implemented in software. Therefore,  a  combination of 
processor and programmable logic offers better 
performance. To increase the flexibility, it is smarter to 
integrate a processor core into the PLD as a soft core, 
than to add an additional external processor. The 
duration of the product cycles in the mechanical 
engineering and automotive industry is significant 
higher than those in the IT industry. As a consequence, 
processors and other integrated circuits used for the first 
development are no longer competitive or even no more 
in trade later in product life cycle. 

Presently the specification of control algorithms for 
hardware is made on the base of hardware description 
languages (HDL). Nevertheless, this is not the method 
for the development engineer in the field of 
mechatronics, who prefers tools like block diagram 
editors etc. Also HDLs provide arithmetic functions 
only on a low level. These are to provide by the 
developer or PLD manufacturer themselves and 
therefore there is no uniform library of arithmetic 
functions which supports portability. Arithmetic 
elements provided, generally use bit-parallel arithmetic 
in conjunction with logic-intensive and complex 
operators. Therefore a method has been developed in [3] 
for the specification and synthesis of control algorithms 



 

in a bit-serial manner. A block diagram editor is used 
there for specification [4], which is build upon a library 
of bit-serial arithmetic operators [5]. 

2 Reconfiguration 

Reconfiguration means changing logic parts of an 
FPGA. This can happen during run time. This case is 
usually called dynamic reconfiguration.  Off line it is 
referred to as static reconfiguration. During 
reconfiguration generally some parts remain 
unchanged. This is on the one hand the logic device 
with its supporting devices and on the other hand some 
parts of the implemented user logic. 
Changes which result from modified requirements, 
improved functionality or the elimination of errors can 
be allowed by static configuration by re-use of existing 
hardware. This is especially interesting against the 
background of reconfigurable analogous and digital 
interfaces which can be reconfigured to work with 
different clock cycles, word lengths and protocols. 
Thereby the possibility exists to carry out the ability of 
configuration off the PLD and to develop an universal 
hardware (PCB), which can host several generations of 
algorithms alternatively. By this, the total number of 
hardware variants is drastically reduced. This is 
important e.g. in the life cycle of a product of the 
mechanical or automotive industry, which lasts from the 
start of development, over production and until the end 
of the supply of spare parts up to 30 years. In contrast, 
the product cycles of the IT industry are much shorter. 
Against this background, the supply with programmable 
devices (CPUs, periphery ICs) represents a big problem. 
Storing these devices over such a long period is very 
expensive, particularly as storage failures are to be 
deplored. A universal configurable hardware reduces 
this problem clearly. 

Generally, different algorithms are processed using  
controllers depending on the operating point or 
operating state. An example is a vehicle’s ABS, which 
has to run very complicated control functions during the 
braking process but in the remaining time its main task 
is supervision. Often functions are related to external 
events, what makes the performance requirement 
strongly depending on the respective operating state. As 
an example an injection system states here, which has to 
run certain functions dependent on the engine speed at 
defined piston positions. This leads among other things 
to the fact that at high motor speed almost the complete 
performance of the processor is used for this task only.  

Presently there is still no hardware platform which 
permits the dynamic reconfiguration simply and in real 
time. In principle the reconfiguration time increases 
with the amount of the reconfiguration, because 
according to this more information has to be 
transferred. Some FPGA types already support a partial 
reconfiguration. However, this cannot occur arbitrarily, 
but only by lines or columns of the underlying array. 
Another problem represents the signal consistency, in 
particular if values from several sampling times have to 

be processed, or the calculation takes a longer time than 
one sampling period. Presently an algorithm runs on, 
even if its results are not actually used. Hence, at the 
switching point the results of the algorithms to be 
switched, are close together and unsteadiness is avoided 
therefore. If now the algorithms are exchanged, no 
calculation occurs in the rests. This brings on the 
problem of the unsteadiness avoidance in the switching 
point. 

3 Example 

The application possibilities of modern FPGAs should 
be shown at the example of a track-controlled vehicle 
model. The vehicle follows a mark on the ground. This 
can be a colour mark as well as a magnetic track. 
According to the type of the mark, an appropriate 
sensor has to be connected together with a suitable 
evaluation of the signals. To make the vehicle follow a 
marked path, all deviations of the vehicle to the track 
should be compensated. For example, a CCD line [6] 
can be used for an optical recognition of the control 
deviation e (see Fig. 1). It has a large number of 
photosensitive photodiodes (e.g., 256) which leads to an 
accordingly high sampling rate (e.g., 256 x 1 kHz). 
However, a low resolution can be sufficient in kind of a 
simple bright-dark differentiation (1 bit resolution). As 
another approach, two magnetic field sensors can be 
used to sense a magnetic track. These offer a lower 
sampling rate (e.g. 2 x 1 kHz), but need a much higher 
resolution (e.g., 12 bits), because the signal amplitude 
corresponds to the distance of the sensor and the track.  

4 The model 

The following simple model of the steering system 
represents the basis for the implementation (see Fig. 1). 

If 
�

x is the path covered within a time unit 
���

 

(proportionally to the vehicle speed v) and �  is the 

steering angle, the movement of the wheel  (
�

y) is 

given by 

                      
y f ( x, )

y(k) x(k) tan (k)
∆ = ∆ α

∆ = ∆ ⋅ α
 (1) 

This approximation is only valid for sufficiently 

small time intervals 
�����

 then a steady speed can be 

assumed during one time interval. For usual 

applications this condition is fulfilled. Because 
�

y 

depends on the steering angle as well as on the covered 
path we see a non-linear (variable gain) behaviour of 
the controlled system.  

For 
�

x as well as for 
�

y is assumed that one digit 

corresponds to path of one millimetre. Such scaling 
definitions are important in particular against the 
background of reconfiguration. Since scaling influences 
the controller’s dimensioning and permits only an easy  
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Fig. 1: Definition of the items 

exchange of the sensors and actuators if the 
components to be exchanged have the same gain. 
Due to the non-linearity of the controlled system, the 
speed affects the manipulated variable, via the 
controller’s parameters. Consequently these parameters 
are adopted by the car’s speed.  
For the adaptation the poles of the whole system are 
placed to suitable positions and the controller 
parameters are derived from that. 

Assuming that u(k)=tan � (k) and 
�

x=const one can 

form a transfer function from eq. (1)  

 S
y

G (z) x
u

∆= = ∆     (2) 

for the controlled system GS. The transfer function GC  
for a discrete PID controller is given by eq. (3): 

 C P D I
u z 1 z

G (z) K K K
e z z 1

−= = + +
−  (3) 

GC GS

e u=tan � � yw

z

 
Fig. 2: Control loop 

Fig. 2 shows the control loop and accordingly to this 
figure a closed loop transfer function G can be 
established using eq. (2) and (3). This transfer function 
has the following denominator GD: 

 

2
D P D I

P D D

G [(K K K ) x 1]z

[(K 2K ) x 1]z K x

= + + ∆ + −
+ ∆ + + ∆  (4) 

On the other hand, a second order system with 2 poles 
z1 has the following transfer function denominator 
G2OD: 

 
2 2 2

2OD 1 1 1G (z z ) z 2z z z= − = − +  (5) 

Eq. (4) and (5) offer the possibility to compare the 
coefficients to find values of the controller parameters 
depending on the placement of the pole z1. 
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I D P 1K K K (z 1)= − − = −  (8) 

 
These three equations come into operation to adopt the 
controller’s gains depending on the car’s speed. 

5 Simulation 

The test bench shown in Fig. 3 is used to embed the 
system, the controller (Fig. 5) and the adaptation (Fig. 
4) for simulation via Matlab/Simulink. In a first step a 
PID-Controller came into operation. However, the 
values of the D-part was very small compared to the P 
and I values. Therefore the D-part was taken away. The 
simulation results are given in Fig. 6 and Fig. 7. Fig. 6 
presents the control deviation depending on the 
disturbance z. An increasing disturbance represents a 
tighter curve and can’ t be fully compensated, this has its 
reason by the simple controller structure.  
  



 

 
Fig. 3: Testbench 

 

 
Fig. 4: Adaptation 

 
  

 
Fig. 5: PID-Controller 



 

 
Fig. 6: Control deviation and disturbance 

 

 
Fig. 7: Car speed in connection with controller gain KP 

However a constant disturbance is compensated by the 
I-part of the controller.  
The controller gain decreases with the increasing car’s 
speed to balance the steer gain, this shows Fig. 7. 

6 Implementation 

The controller and adaptation is implemented in an 
FPGA using VHDL. However, to hide the HDL for 
specification, a block diagram editor (HDL Designer by 

Modeltech) [4] came into operation. For this editor a 
library of signal processing components has been 
developed by the authors in prior work [5]. These 
components use bit serial information processing and 
transmission. This means the operands are transmitted 
and processed in time division. The LSB is transmitted 
as the first bit, because carry most propagates from LSB 
to MSB in arithmetic operations. Bit serial signal 
processing  reduces the complexity and logic effort 



 

significantly at a similar performance compared to bit 
parallel signal processing.  
However non linear operations, as a division, are 
difficult to implement, usually a look-up-table is used. 
To avoid this and to gain experience of processors 
implemented within an FPGA, a processor core is used 
for implementation of the adaptation process. For this 
example the free i8051 core from the Dalton project [5]  
comes into operation. This core is equal to the original 
i8051 from Intel. The processor reads x∆ , converts it to 
a floating point number and computes the gains. Since 
the gains have a limited range ( I0 K 10< <  and 

P10 K 0− < < ), see simulation, eight bit integers are used 

for their representation. They are fed to the controller 
via the processor’s ports.  
The controller uses these gains for the computation of 
an appropriate value of the controlled variable. 
The sampling period of the slower changing car’s speed 
is 10 ms, compared to 1 ms for the control deviation.  
The processor core needs about 1400 FlipFlops, 
however the majority of these FFs is used to store the 
program code. The necessary PID controller utilizes 
only about 200 FFs. This limited need for logic enables 
the circuit to fit in a small XILINX-FPGA [8]. 

7 Conclusion 

The paper shows the possibilities offered by modern 
FPGA hardware and development tools for the 
implementation of fast and complex control algorithms. 
The high amount of logic of today’s FPGAs allows the 
integration of processor cores to run slow but complex 
algorithms in software together with high speed 
hardware algorithms. This new degree of freedom in 
balancing the parts that are implemented in hardware or 
software respectively, together with the possibility to 
reconfigure hardware structures as easily as software, 
will lead to a complete new generation of control 
systems. The example presented in this paper, only 
gives a first impression of the ideas that can be realized 
now. 
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