
FUNCTION REPLACEMENT OF HARD REAL-TIME
SYSTEMS USING PARTIAL RECONFIGURATION

Thomas Reinemann, Roland Kasper
IMAT, Otto-von-Guericke-University Magdeburg

Germany
(thomas.reinemann;roland.kasper)@mb.uni-magdeburg.de

ABSTRACT

This paper describes a method of function replacement in hard real-time systems implemented with FPGAs using
dynamic partial reconfiguration. Prefetching of functions is used to avoid violations of real time conditions in cases
where reconfiguration time is large compared to sampling time. A finite state machine determined from the specification
of the real-time system is used to control reconfiguration and prefetching. Implementations for a distributed finite state
machine of each module and a distributed communication system that supports loading and activation of functions are
presented.

KEYWORDS

Partial reconfiguration, hard real-time systems, distributed real-time communication system, signal processing

1. INTRODUCTION

The work described in this paper is part of the development of a new type of adaptable hard real time
system using dynamic reconfiguration of FPGAs. It is related to signal flow oriented systems commonly used
in feed back and feed forward control systems, for example in Electronic Control Units (ECU) in the field of
automotive systems. Signal flow is a natural way to specify control systems, where physical data is taken
from process inputs representing physical quantities, processed in distinct blocks connected by signal lines
and then fed back to process outputs to convert them back to the physical world. Some dedicated
considerations emphasize the parallelizing at block level and serializing at signal level, which leads to very
efficient solutions [1].

It is common technology to replace a specific function depending on the operating points of a control
system. That means that structure, parameters or the resolution and sampling rate of a control algorithm is
changed depending on specific condition, e.g. an engine’s revolutions per minute (rpm). If software is used
for implementation, then only another function has to be called or another set of parameters will be used.
Implementing controllers and signal processing algorithms directly in hardware, e.g. using FPGAs, classical
approaches implement all functions needed and switch between them as necessary [2]. This results in large
logic needs, which can be reduced significantly, if only the logic of the currently used function is loaded and
the unused logic is stored in external memory. This can be achieved by partial reconfiguration of the FPGA’s
logic at runtime. In case of hard real-time systems the time TR needed for reconfiguration has to be
considered, because during reconfiguration the function’s logic is not active. TR is governed by the function’s
size and reconfiguration speed (FPGA clock and type). Today, reconfigurable FPGAs like the Virtex-II
family offer reconfiguration times in the range of some milliseconds. TR has to be seen in relation to the
sampling time TS, which is given by the real time needs of the control problem, and the processing time TP,
which is determined by the functions logic and the clock. The relation between TR, TP and TS separates two
cases.

On the one hand TS is equal or larger than TP+TR. In this situation, function replacement can take place
within one sampling period without loss of any data. On the other hand TP+TR exceed TS. In this case one or
several samples could not be processed during reconfiguration, which cannot be accepted for hard real-time

systems. To avoid this, the new function has to be prefetched. An implementation of this method of function
replacement will be presented in this paper.

Implementation takes place using a Xilinx Virtex-II FPGA. The design flow of partial reconfiguration [3]
is based on the Xilinx Modular Design methodology [4]. Reconfigurable functions are referred as modules.
Each module can have different types, which are loaded to reconfigure the area/slots assigned to this module.
All types (TI, TII, TIII …) of a module must have the same interface, which means the same size and
location of the ports. Generally, the interface signals can be divided in two groups: control signals and
process signals. Process signals carry the information related to signal processing. Control signals are
supposed to control the loading and activation of functions/types. This is necessary, because multiple sources
for a process signal can exist, if more than one type is loaded at the same time, but only one is allowed to
drive a process signal. Signals crossing module boundaries need bus macros, which are used to control
driving of process signals.

Bit serial processing and transmission comes into operation for signal processing and implementation of
control algorithms [5]. This results in low logic effort and a small number of lines needed to implement
process signals. Therefore it is not necessary to use busses [6] or networks [7] for communication purposes of
the control system or the signal lines.

2. FUNCTION REPLACEMENT

2.1 Module FSM

The dependency which module type has to be loaded is controlled by a finite state machine for each
module (M-FSM). Figure 1 shows an example of a FSM representing a module having three types (TI, TII
and TIII). The transition conditions typically are related to physical items (e.g. revolution speed of a motor).
They are part of the controller’s specification and define its operating points. In this example the FSM covers
three different operating points, each implemented by a type. In this example, defined by the structure of the
FSM, only one additional type needs to be prefetched in each state to switch to the next state without delay.
That means only two of three types have to be loaded at the same time and the module needs two slots within
the FPGA, where its types are loaded. Prefetching a type can be seen as a transition action. It is important
that loading TIII is a transition action of state A that is executed in parallel to the activation of state B.

Extending the example of figure 1 with an additional
transition from A to C, means that in state A type TI has
to be loaded and active and types TII and TIII have to be
prefetched and will require logic too. In this situation
dynamic reconfiguration will have no advantages,
whereas the situation where state B or C is active will be
as before.

Typically a control system implements more than one
FSM or module. To analyze the usability of dynamic
reconfiguration for a specific application the relation
between the maximum number of accessible states NR and
the total number of states NS of a module is relevant. Only
in cases where NR+1<NS module prefetching is useful and
results in logic savings.

In general, each transition disposes the activation of
one type and loading of zero (if already prefetched), one or more other types of the module it belongs to,
depending on the structure of the M-FSM that is known at compile time. Consequently the M-FSM can be
broken down to parts implemented by the types of the module. This distribution requires a method to transfer
the active state of each M-FSM from one type to the next active state. For this purpose a global marker for
each type (T-marker) is used.

A
T I

B
T II

C
T III

load TIII

condition 1

load TIload TII

condition 2condition 3

Figure 1 Example of a module FSM

2.2 Type-FSM

Each type of a module can have different states
• Not loaded: stored in external memory, needs no logic,
• Ready: prefetched, listening on control input, but not processing data or driving outputs,
• Active: loaded, listening on control input, processing data and driving outputs,

which can be represented by a FSM (T-FSM)
given in figure 2. After a type is prefetched and
the reset (local to each slot) becomes inactive,
the T-FSM switches to “ready”. Now the type
listens for its T-marker but keeps the signal
outputs inactive. To each type belongs exactly
one T-Marker, which can is defined by the
static structure of the M-FSM. After receiving
its T-marker the T-FSM switches to “active”
and activates its signal outputs. From now on it
processes information and sends data to signal
outputs. If “condition x” of the M-FSM fires the
T-FSM switches back to “ready”, two actions
take place:

• Deactivate process signal outputs,
• Send the T-marker of the next active type.

In cases where the type is replaced by a prefetched type its state changes to “not loaded”. To facilitate
implementation M-FSM and T-FSM are packed together. This is straightforward, because the “active” to
“ready” transition and action of the T-FSM has to be implemented only once and actions of all transitions of
the M-FSM have only to be augmented by the actions of the corresponding transitions of the T-FSM.

2.3 Communication and Control System

T-markers are exchanged via a very efficient communication system. Since communication takes place
across module boundaries, bus macros come into operation. Xilinx bus macros utilize long lines, which are
driven by tristate buffers. To avoid a complex arbitration method, a distributed shift register has been used as
base of a communication system.

Figure 3 shows the structure of the communication system, straddling all slots of the FPGA. Each module
represents a subscriber. All together build a shift register, where each subscriber stores one bit of the message

not
loaded

ready

activesend T-marker
deactivate outputs

T-marker received

condition x
start signal processing

activate outputs

type pefetched

type replaced

--

--

Figure 2 Type-FSM

D

FSM FSM FSMFSM

S
-R

E
G

D D D

Data Data Data Data

dashed
lines are
module

boundaries

Figure 3 Basic structure of the communication system

and shifts it to its neighbor on each clock. An additional shift register (S-REG) is required to balance the
difference between the message length and the number of subscribers. The message has the following
structure:

• Start delimiter: 8 bits
• Used flag: 1 bit,
• Data field: fixed length to represent T-markers.

A subscriber is permitted to write data only if the used flag is not set. If the used flag is set and the
subscriber detects its T-marker, the used flag will be cleared. It has to be guaranteed that the message is
shifted through the complete register within sampling period TS. With an operation frequency of 40 MHz and
a message length of 16 bits, sampling periods smaller than 0.4 µs are possible.

Loading of module types is organized by a general control module GCM, which is a static module that
receives all messages and implements the additional shift register. The GCM has access to a table containing
all possible T-markers together with their location and size of bit streams in external memory. Furthermore,
the table stores information which types have to be prefetched. After receiving a T-marker the GCM reads
the bit streams to be loaded and sends them to the internal reconfiguration access port (ICAP). The type table
represents static data that can be determined at compile time from the FSM structure. GCM also adapts lines
between the distributed registers of the communication system to bypass a slot during reconfiguration.

2.4 Implementation and Slots

A reconfigurable system based on the method described in this paper has been implemented on a Virtex-
II. The exchange of messages via the communication system, reading of a configuration and sending it to
ICAP have been simulated and validated on functional level. The complete testbench is described in VHDL.
Prefetching of types influences implementation, because the modular design flow [3] is planed to implement
different types of a module always into the same slot. But the proposed method expects multiple types of a
module to be loaded simultaneously. The allocation of a slot by a certain type can be static or variable,
depending on the structure of the M-FSM. In case of variable allocation a type may be loaded into different
slots. To enable this, the type can be implemented for all possible slots, which results in multiple bit streams
and a large amount of memory to store them. Another way is to implement the type only once and to
manipulate the bit stream before loading in the GCM. This is possible using tools like PARBIT [8]. In this
case a module needs unified slots with the bus macros placed on the same relative slot position, which is
guaranteed for this application. Special bus macros have been developed, which straddle more than two slots,

P
ro

ce
ss

In
te

rf
ac

e

Recon-
figurable

Slot2

Network
Interface

Recon-
figurable

Slot1

General
Control
Module

Communication System

Process
Signal

Figure 4 Partitioning and implementation of a dynamic reconfigurable system on a Virtex-II

to enable access to one process signal destination from multiple slots. The dynamic reconfiguration of the
communication system and its bus macros have been implemented and tested.

Figure 4 shows the implementation example for the reconfigurable system, built from a fixed part
(General Control Module, Network Interface, Reconfiguration Controller and Process Interface) and two
reconfigurable slots. Both slots can host either an active or prefetched type mutually exclusive. Furthermore
an example of a process signal is shown, which can be driven from both slots, depending on which slot is
active. The activation information is exchanged as a T-Marker via the communication system. It has three
subscribers, General Control Module and both reconfigurable slots.

3. CONCLUSION

The presented method allows function replacement in hard real-time systems implemented directly in FPGA
hardware. The needed logic amount is reduced by dynamic reconfiguration and enables the implementation
of more complex algorithm into smaller FPGAs. Prefetching of function logic is used to guarantee hard real-
time conditions, even in cases where reconfiguration times are large compared to sampling times. The
distributed communication system used to synchronize the distributed state machines is very fast and needs a
minimum of logic. Future work will be focused on questions of dynamic slot allocation in situations, where
static concepts will not offer a satisfying solution.

REFERENCES

[1] Andre DeHon, John Wawrzynek: Reconfigurable computing: what, why, and implications for design automation,
Proceedings of the 36th ACM/IEEE conference on Design automation conference, 1999, ISBN 1-58133-109-7, New
Orleans, Louisiana, United States, ACM Press, p. 610 – 615.

[2] Gand, G.; Kasper, R.; 2004, A Power Drive Control for Piezoelectric Actuators, Proceedings of the IEEE-ISIE 2004,
Ajaccio, France, pp. 963-968

[3] Xilinx: 2004; Two flow for partial reconfiguration: Module based or difference based, XAPP290

[4] Xilinx: 2004; Xilinx Development Systems Reference Guide;

[5] Kasper, R.; Reinemann, Th.: 2000, Gate level implementation of high speed controllers and filters for mechatronic
systems, Mechatronic Workshop 2000; Krakau, Poland

[6] Huebner, M.; et. al.: 2004, Scalable Application-Dependent Network on Chip Adaptivity for Dynamical
Reconfigurable Real-Time Systems, FPL 2004, Leuven, Belgium, pp. 1037 – 1041.

[7] Marescaux, T et. al; 2002, Interconnection networks enable fine-grain dynamic multitasking on FPGAs, FPL 2002;
FPL 2002, Montpellier, France, p. 795

[8] Edson L. Horta: 2002; Dynamic Hardware Plugins in an FPGA with Partial Run-time Reconfiguration; Design
Automation Conference (DAC); New Orleans, LA, http://www.arl.wustl.edu/projects/fpx/parbit/

