FUNCTION REPLACEMENT OF HARD REAL-TIME
SYSTEMSUSING PARTIAL RECONFIGURATION

Thomas Reinemann, Roland Kasper
IMAT, Otto-von-Guericke-University Magdeburg
Germany
(thomas.reinemann; rol and.kasper) @mb.uni-magdeburg.de

ABSTRACT

This paper describes a method of function replacement in reatdime systems implemented with FPGAs using
dynamic partial reconfiguration. Prefetching of functionsised to avoid violations of real time conditions in sase
where reconfiguration time is large compared to sampiineg.tA finite state machine determined from the specifinat
of the real-time system is used to control reconfigunasind prefetching. Implementations for a distributed finitee sta
machine of each module and a distributed communication sybtgnsupports loading and activation of functions are
presented.

KEYWORDS

Partial reconfiguration, hard real-time systems, ithisted real-time communication system, signal processing

1. INTRODUCTION

The work described in this paper is part of the developnfeatnew type of adaptable hard real time
system using dynamic reconfiguration of FPGAs. It iateel to signal flow oriented systems commonly used
in feed back and feed forward control systems, for examggectronic Control Units (ECU) in the field of
automotive systems. Signal flow is a natural way to ifpeontrol systems, where physical data is taken
from process inputs representing physical quantities;egised in distinct blocks connected by signal lines
and then fed back to process outputs to convert them lmcket physical world. Some dedicated
considerations emphasize the parallelizing at block lewe serializing at signal level, which leads to very
efficient solutions [1].

It is common technology to replace a specific functiopedéing on the operating points of a control
system. That means that structure, parameters or sbkitien and sampling rate of a control algorithm is
changed depending on specific condition, e.g. an engine’kitievs per minute (rpm). If software is used
for implementation, then only another function haddocalled or another set of parameters will be used.
Implementing controllers and signal processing algoritdimectly in hardware, e.g. using FPGAs, classical
approaches implement all functions needed and switetebatthem as necessary [2]. This results in large
logic needs, which can be reduced significantly, if ohiytogic of the currently used function is loaded and
the unused logic is stored in external memory. This cacheved by partial reconfiguration of the FPGA’s
logic at runtime. In case of hard real-time systemstime Tz needed for reconfiguration has to be
considered, because during reconfiguration the functiogis Ie not active. §is governed by the function’s
size and reconfiguration speed (FPGA clock and type). yfodgonfigurable FPGAs like the Virtex-Il
family offer reconfiguration times in the range of somilliseconds. # has to be seen in relation to the
sampling time §, which is given by the real time needs of the cdrgroblem, and the processing timg T
which is determined by the functions logic and the clodie fielation betweengJ Tp and Ts separates two
cases.

On the one handglis equal or larger thansFTr. In this situation, function replacement can take place
within one sampling period without loss of any data. Gndtiher hand #Tr exceed §. In this case one or
several samples could not be processed during reconfigyratiach cannot be accepted for hard real-time

systems. To avoid this, the new function has to beefufeéd. An implementation of this method of function
replacement will be presented in this paper.

Implementation takes place using a Xilinx Virtex-1l FPGAeTdesign flow of partial reconfiguration [3]
is based on the Xilinx Modular Design methodology [4]. Réigarable functions are referred as modules.
Each module can have different types, which are loadegttmfigure the area/slots assigned to this module.
All types (TI, TII, THI ...) of a module must have the sarmterface, which means the same size and
location of the ports. Generally, the interface sigr@s be divided in two groups: control signals and
process signals. Process signals carry the informagtated to signal processing. Control signals are
supposed to control the loading and activation of functigoess. This is necessary, because multiple sources
for a process signal can exist, if more than one typeaided at the same time, but only one is allowed to
drive a process signal. Signals crossing module boundariéshbusemacros, which are used to control
driving of process signals.

Bit serial processing and transmission comes intoatiger for signal processing and implementation of
control algorithms [5]. This results in low logic effahd a small number of lines needed to implement
process signals. Therefore it is not necessary tousseb [6] or networks [7] for communication purposes of
the control system or the signal lines.

2. FUNCTION REPLACEMENT

2.1 Module FSM

The dependency which module type has to be loaded is Bedtlry a finite state machine for each
module (M-FSM). Figure 1 shows an example of a FSM repiiageatmodule having three types (T, TII
and TIII). The transition conditions typically areatd to physical items (e.g. revolution speed of a motor).
They are part of the controller’s specification andrdeits operating points. In this example the FSM covers
three different operating points, each implemented by a byghis example, defined by the structure of the
FSM, only one additional type needs to be prefetched in statd to switch to the next state without delay.
That means only two of three types have to be loaddtaaime time and the module needs two slots within
the FPGA, where its types are loaded. Prefetchinge ¢an be seen as a transition action. It is importan
that loading TlIl is a transition action of statahfat is executed in parallel to the activation of state B

Extending the example of figure 1 with an additional
transition from A to C, means that in state A tydeh@as
to be loaded and active and types TIl and TllI have to be
prefetched and will require logic too. In this situation
dynamic reconfiguration will have no advantages,
whereas the situation where state B or C is actillebey

condition 1
load TIII

N as before.
condition condition 2 Typically a control system implements more than one
P — load TI FSM or module. To analyze the usability of dynamic

load Tl reconfiguration for a specific application the relation

between the maximum number of accessible stajemn

the total number of states;Mf a module is relevant. Only

in cases where iN1<Ns module prefetching is useful and
Figure 1 Example of a module FSM results in logic savings.

In general, each transition disposes the activation of
one type and loading of zero (if already prefetched), anmore other types of the module it belongs to,
depending on the structure of the M-FSM that is knowooatpile time. Consequently the M-FSM can be
broken down to parts implemented by the types of the mothis distribution requires a method to transfer
the active state of each M-FSM from one type to té active state. For this purpose a global marker for
each type (T-marker) is used.

2.2 Type-FSM

Each type of a module can have different states

» Not loaded: stored in external memory, needs no logic,

» Ready: prefetched, listening on control input, but motgssing data or driving outputs,

« Active: loaded, listening on control input, processingdad driving outputs,
which can be represented by a FSM (T-FSM)
given in figure 2. After a type is prefetched and type pefetched
the reset (local to each slot) becomes inactiyr --
the T-FSM switches to “ready”. Now the tyy not
listens for its T-marker but keeps the sigh loaded
outputs inactive. To each type belongs exac
one T-Marker, which can is defined by the
static structure of the M-FSM. After receiving
its T-marker the T-FSM switches to “active” condition x
and activates its signal outputs. From now on it
processes information and sends data to signal send T-marker
outputs. If “condition x” of the M-FSM fires the deactivate outputs
T-FSM switches back to “ready”, two actions
take place: Figure 2 Type-FSM

 Deactivate process signal outputs,

» Send the T-marker of the next active type.
In cases where the type is replaced by a prefetched ttyptaie changes to “not loaded”. To facilitate
implementation M-FSM and T-FSM are packed together. Ehitraightforward, because the “active” to
“ready” transition and action of the T-FSM has to f@lemented only once and actions of all transitions of
the M-FSM have only to be augmented by the actionseofdhresponding transitions of the T-FSM.

type replaced

- T-marker received

start signal processing
activate outputs

2.3 Communication and Control System

T-markers are exchanged via a very efficient communitatigstem. Since communication takes place
across module boundaries, bus macros come into operdtiorx. bus macros utilize long lines, which are
driven by tristate buffers. To avoid a complex arbitratinethod, a distributed shift register has been used as
base of a communication system.

Figure 3 shows the structure of the communicatioresysstraddling all slots of the FPGA. Each module
represents a subscriber. All together build a shifister, where each subscriber stores one bit of theages

I I I I | I
| | | | | |
Io I I I I I
I | | oo | | |
leh I I I I I
| | | I I |
I I I I I I
		dashed		
D	D N lines are			
		module		
[boundaries		
I I I I I I				
FSM	FSM			FSM
Data I Data I I I Data I				

Figure 3 Basic structure of the communication system

and shifts it to its neighbor on each clock. An adddioshift register (S-REG) is required to balance the
difference between the message length and the numberbstribers. The message has the following
structure:

« Start delimiter: 8 bits

» Used flag: 1 bit,

« Data field: fixed length to represent T-markers.

A subscriber is permitted to write data only if the used) fis not set. If the used flag is set and the
subscriber detects its T-marker, the used flag will lkared. It has to be guaranteed that the message is
shifted through the complete register within sampling pefipdVith an operation frequency of 40 MHz and
a message length of 16 bits, sampling periods smaller thars@re possible.

Loading of module types is organized by a general contrdutecGCM, which is a static module that
receives all messages and implements the additionatepiéter. The GCM has access to a table containing
all possible T-markers together with their location aizé of bit streams in external memory. Furthermore,
the table stores information which types have to béefoteed. After receiving a T-marker the GCM reads
the bit streams to be loaded and sends them to theahteconfiguration access port (ICAP). The type table
represents static data that can be determined at campéldrom the FSM structure. GCM also adapts lines
between the distributed registers of the communicatistes to bypass a slot during reconfiguration.

2.4 Implementation and Slots

A reconfigurable system based on the method descriktbisipaper has been implemented on a Virtex-
Il. The exchange of messages via the communicationnsystading of a configuration and sending it to
ICAP have been simulated and validated on functional.léved complete testbench is described in VHDL.
Prefetching of types influences implementation, bectusenodular design flow [3] is planed to implement
different types of a module always into the same slot.tBrfproposed method expects multiple types of a
module to be loaded simultaneously. The allocation ofoatsl a certain type can be static or variable,
depending on the structure of the M-FSM. In case ofb&iallocation a type may be loaded into different
slots. To enable this, the type can be implementedlfqossible slots, which results in multiple bit atres
and a large amount of memory to store them. Another iwap implement the type only once and to
manipulate the bit stream before loading in the GCMs Thipossible using tools like PARBIT [8]. In this
case a module needs unified slots with the bus macrosdptat the same relative slot position, which is
guaranteed for this application. Special bus macros havedaeetoped, which straddle more than two slots,

Communication System

{ ! !

0n O
0 Q - -
3 8 _Recon _Recon General Network
S 5 figurable figurable Control Interface
ac Slot1l Slot2 Module

Process

Signal ™~

/

Figure 4 Partitioning and implementation of a dynamic reconfigurayséesn on a Virtex-I|

to enable access to one process signal destinationnfudtiple slots. The dynamic reconfiguration of the
communication system and its bus macros have been implechand tested.

Figure 4 shows the implementation example for thenfegarable system, built from a fixed part
(General Control Module, Network Interface, ReconfigoratController and Process Interface) and two
reconfigurable slots. Both slots can host either dineaor prefetched type mutually exclusive. Furthermore
an example of a process signal is shown, which can bendfiom both slots, depending on which slot is
active. The activation information is exchanged as aafkkt via the communication system. It has three
subscribers, General Control Module and both reconfigusibis.

3. CONCLUSION

The presented method allows function replacement in hartimeasystems implemented directly in FPGA
hardware. The needed logic amount is reduced by dynamicfigggation and enables the implementation
of more complex algorithm into smaller FPGAs. Prefetgtohfunction logic is used to guarantee hard real-
time conditions, even in cases where reconfigurationes are large compared to sampling times. The
distributed communication system used to synchronizdigiebuted state machines is very fast and needs a
minimum of logic. Future work will be focused on questionslyfamic slot allocation in situations, where
static concepts will not offer a satisfying solution.

REFERENCES

[1] Andre DeHon, John Wawrzynek: Reconfigurable computing: what, amy,implications for design automation,
Proceedings of the 36th ACM/IEEE conference on Design automation conference, 1999, ISBN 1-58133-109-7, New
Orleans, Louisiana, United States, ACM Press, p. 610 — 615

[2] Gand, G.; Kasper, R.; 2004, A Power Drive Control for @éectric ActuatorsProceedings of the |EEE-I S E 2004,
Ajaccio, France, pp. 963-968

[3] Xilinx: 2004; Two flow for partial reconfiguration: Module basaddifference based, XAPP290
[4] Xilinx: 2004; Xilinx Development Systems Reference Guide;

[5] Kasper, R.; Reinemann, Th.: 2000, Gate level implementatibiglo speed controllers and filters for mechatronic
systemsMechatronic Workshop 2000; Krakau, Poland

[6] Huebner, M.; et. al.: 2004, Scalable Application-Dependent Nktvasr Chip Adaptivity for Dynamical
Reconfigurable Real-Time Systerf®L 2004, Leuven, Belgium, pp. 1037 — 1041.

[7] Marescaux, T et. al; 2002, Interconnection networks enaldegfin dynamic multitasking on FPGASPL 2002;
FPL 2002, Montpellier, France, p. 795

[8] Edson L. Horta: 2002; Dynamic Hardware Plugins in an FPGA wdittid? Run-time ReconfiguratiorDesign
Automation Conference (DAC); New Orleans, LA, http://www.arl.wustl.edu/projects/fpxhptl

