
Use of hardware and software information processing in mechatronics on the
example of an adaptive control

Thomas Reinemann

Otto-von-Guericke University Magdeburg
Insitute of Mechatronics and Drive Technology

Universitätsplatz 2 , D-39106 Magdeburg, Germany
thomas.reinemann@mb.uni-magdeburg.de

Roland Kasper
Otto-von-Guericke University Magdeburg

Insitute of Mechatronics and Drive Technology
Universitätsplatz 2 , D-39106 Magdeburg, Germany

roland.kasper@mb.uni-magdeburg.de

Abstract–Today micro-controllers and signal
processors are the standard-implementing platform
for embedded controllers. But often their
per formance can not keep pace with requirements
for demanding applications, for example in
mechatronic systems. Usually, in this case the micro-
controller is replaced by a faster one. But this
doesn’ t avoid software problems ar ising in realtime
applications even by using high level languages and
always by using assembler language. Fur ther
problems are concerned with higher clock
frequencies and energy consumption.
On the other hand FPGAs are very well suited for
high speed applications, because information
processing can be per formed in parallel. But they
usually lack common mathematical function
librar ies, so that control and filter algor ithms have to
be implemented in a time consuming and expensive
process.
Today’s FPGAs offer a huge number of gates, so
that even a processor core can be implemented
inside. This enables a combination of hardware and
software signal processing within only one IC.
Thereby the available software can be used fur ther
on and only some algor ithms requir ing high
per formance have to be implemented in hardware.
Fur thermore some aspects of reconfigurable
computing are treated.

1 Introduction

The rapid development of microelectronics in general
and of programmable logic devices (FPGAs and
CPLDs) in special, opens completely new possibilities
of digital implementation of control and signal
processing in embedded systems. The success of
microcontrollers and digital signal processors was
characterized by an efficient hardware combined with
flexible and adaptable software structures. The strength
of programmable logic devices is given by flexible and
very fast hardware structures. Together these
technologies show the way in a new era of
reconfigurable controllers. These allow the adaptation
of hardware-based controllers to specific operating
conditions by changing the hardware configuration
during operation time by which the necessary number of
gates and the power demand is reduced. A good

overview of the potentials and implementation aspects
of reconfigurable computing is given in [1], [2].
Some dedicated considerations emphasize the
parallelizing at block level and serializing at signal
level in [2], which lead to very efficient solutions.

The development of universal, usable dynamically
reconfigurable computer architectures introduces a
number of difficult questions. The dynamic
reconfiguration of the system is enabled by exchange of
some components during run time. Besides,
reconfiguration often requires some kind of operating
system which controls and supervises the
reconfiguration process.

The base for the reconfiguration process is build by
FPGA configuration files, which represent the resources
needed by an application. They are used for a dynamic
allocation of required resources. Indeed, the
reconfiguration ability also causes costs. Generally, for
the solution of a problem several tasks are necessary.
Therefore it is to be ensured that all these tasks can be
loaded and linked at the same time.

However hardware implementation isn’ t a general
solution at all. Since sequential algorithms can be better
implemented in software. Therefore, a combination of
processor and programmable logic offers better
performance. To increase the flexibility, it is smarter to
integrate a processor core into the PLD as a soft core,
than to add an additional external processor. The
duration of the product cycles in the mechanical
engineering and automotive industry is significant
higher than those in the IT industry. As a consequence,
processors and other integrated circuits used for the first
development are no longer competitive or even no more
in trade later in product life cycle.

Presently the specification of control algorithms for
hardware is made on the base of hardware description
languages (HDL). Nevertheless, this is not the method
for the development engineer in the field of
mechatronics, who prefers tools like block diagram
editors etc. Also HDLs provide arithmetic functions
only on a low level. These are to provide by the
developer or PLD manufacturer themselves and
therefore there is no uniform library of arithmetic
functions which supports portability. Arithmetic
elements provided, generally use bit-parallel arithmetic
in conjunction with logic-intensive and complex
operators. Therefore a method has been developed in [3]
for the specification and synthesis of control algorithms

in a bit-serial manner. A block diagram editor is used
there for specification [4], which is build upon a library
of bit-serial arithmetic operators [5].

2 Reconfiguration

Reconfiguration means changing logic parts of an
FPGA. This can happen during run time. This case is
usually called dynamic reconfiguration. Off line it is
referred to as static reconfiguration. During
reconfiguration generally some parts remain
unchanged. This is on the one hand the logic device
with its supporting devices and on the other hand some
parts of the implemented user logic.
Changes which result from modified requirements,
improved functionality or the elimination of errors can
be allowed by static configuration by re-use of existing
hardware. This is especially interesting against the
background of reconfigurable analogous and digital
interfaces which can be reconfigured to work with
different clock cycles, word lengths and protocols.
Thereby the possibility exists to carry out the ability of
configuration off the PLD and to develop an universal
hardware (PCB), which can host several generations of
algorithms alternatively. By this, the total number of
hardware variants is drastically reduced. This is
important e.g. in the life cycle of a product of the
mechanical or automotive industry, which lasts from the
start of development, over production and until the end
of the supply of spare parts up to 30 years. In contrast,
the product cycles of the IT industry are much shorter.
Against this background, the supply with programmable
devices (CPUs, periphery ICs) represents a big problem.
Storing these devices over such a long period is very
expensive, particularly as storage failures are to be
deplored. A universal configurable hardware reduces
this problem clearly.

Generally, different algorithms are processed using
controllers depending on the operating point or
operating state. An example is a vehicle’s ABS, which
has to run very complicated control functions during the
braking process but in the remaining time its main task
is supervision. Often functions are related to external
events, what makes the performance requirement
strongly depending on the respective operating state. As
an example an injection system states here, which has to
run certain functions dependent on the engine speed at
defined piston positions. This leads among other things
to the fact that at high motor speed almost the complete
performance of the processor is used for this task only.

Presently there is still no hardware platform which
permits the dynamic reconfiguration simply and in real
time. In principle the reconfiguration time increases
with the amount of the reconfiguration, because
according to this more information has to be
transferred. Some FPGA types already support a partial
reconfiguration. However, this cannot occur arbitrarily,
but only by lines or columns of the underlying array.
Another problem represents the signal consistency, in
particular if values from several sampling times have to

be processed, or the calculation takes a longer time than
one sampling period. Presently an algorithm runs on,
even if its results are not actually used. Hence, at the
switching point the results of the algorithms to be
switched, are close together and unsteadiness is avoided
therefore. If now the algorithms are exchanged, no
calculation occurs in the rests. This brings on the
problem of the unsteadiness avoidance in the switching
point.

3 Example

The application possibilities of modern FPGAs should
be shown at the example of a track-controlled vehicle
model. The vehicle follows a mark on the ground. This
can be a colour mark as well as a magnetic track.
According to the type of the mark, an appropriate
sensor has to be connected together with a suitable
evaluation of the signals. To make the vehicle follow a
marked path, all deviations of the vehicle to the track
should be compensated. For example, a CCD line [6]
can be used for an optical recognition of the control
deviation e (see Fig. 1). It has a large number of
photosensitive photodiodes (e.g., 256) which leads to an
accordingly high sampling rate (e.g., 256 x 1 kHz).
However, a low resolution can be sufficient in kind of a
simple bright-dark differentiation (1 bit resolution). As
another approach, two magnetic field sensors can be
used to sense a magnetic track. These offer a lower
sampling rate (e.g. 2 x 1 kHz), but need a much higher
resolution (e.g., 12 bits), because the signal amplitude
corresponds to the distance of the sensor and the track.

4 The model

The following simple model of the steering system
represents the basis for the implementation (see Fig. 1).

If
�

x is the path covered within a time unit
���

(proportionally to the vehicle speed v) and � is the

steering angle, the movement of the wheel (
�

y) is

given by

y f (x,)

y(k) x(k) tan (k)
∆ = ∆ α

∆ = ∆ ⋅ α
 (1)

This approximation is only valid for sufficiently

small time intervals
�����

 then a steady speed can be

assumed during one time interval. For usual

applications this condition is fulfilled. Because
�

y

depends on the steering angle as well as on the covered
path we see a non-linear (variable gain) behaviour of
the controlled system.

For
�

x as well as for
�

y is assumed that one digit

corresponds to path of one millimetre. Such scaling
definitions are important in particular against the
background of reconfiguration. Since scaling influences
the controller’s dimensioning and permits only an easy

� � y

�
x

e

Fig. 1: Definition of the items

exchange of the sensors and actuators if the
components to be exchanged have the same gain.
Due to the non-linearity of the controlled system, the
speed affects the manipulated variable, via the
controller’s parameters. Consequently these parameters
are adopted by the car’s speed.
For the adaptation the poles of the whole system are
placed to suitable positions and the controller
parameters are derived from that.

Assuming that u(k)=tan � (k) and
�

x=const one can

form a transfer function from eq. (1)

 S
y

G (z) x
u

∆= = ∆ (2)

for the controlled system GS. The transfer function GC
for a discrete PID controller is given by eq. (3):

 C P D I
u z 1 z

G (z) K K K
e z z 1

−= = + +
− (3)

GC GS

e u=tan � � yw

z

Fig. 2: Control loop

Fig. 2 shows the control loop and accordingly to this
figure a closed loop transfer function G can be
established using eq. (2) and (3). This transfer function
has the following denominator GD:

2
D P D I

P D D

G [(K K K) x 1]z

[(K 2K) x 1]z K x

= + + ∆ + −
+ ∆ + + ∆ (4)

On the other hand, a second order system with 2 poles
z1 has the following transfer function denominator
G2OD:

2 2 2

2OD 1 1 1G (z z) z 2z z z= − = − + (5)

Eq. (4) and (5) offer the possibility to compare the
coefficients to find values of the controller parameters
depending on the placement of the pole z1.

2
1

D
z

K
x

=
∆ (6)

2
1 1

P
2z 2z 1

K
x

− + −
=

∆ (7)

2

I D P 1K K K (z 1)= − − = − (8)

These three equations come into operation to adopt the
controller’s gains depending on the car’s speed.

5 Simulation

The test bench shown in Fig. 3 is used to embed the
system, the controller (Fig. 5) and the adaptation (Fig.
4) for simulation via Matlab/Simulink. In a first step a
PID-Controller came into operation. However, the
values of the D-part was very small compared to the P
and I values. Therefore the D-part was taken away. The
simulation results are given in Fig. 6 and Fig. 7. Fig. 6
presents the control deviation depending on the
disturbance z. An increasing disturbance represents a
tighter curve and can’ t be fully compensated, this has its
reason by the simple controller structure.

Fig. 3: Testbench

Fig. 4: Adaptation

Fig. 5: PID-Controller

Fig. 6: Control deviation and disturbance

Fig. 7: Car speed in connection with controller gain KP

However a constant disturbance is compensated by the
I-part of the controller.
The controller gain decreases with the increasing car’s
speed to balance the steer gain, this shows Fig. 7.

6 Implementation

The controller and adaptation is implemented in an
FPGA using VHDL. However, to hide the HDL for
specification, a block diagram editor (HDL Designer by

Modeltech) [4] came into operation. For this editor a
library of signal processing components has been
developed by the authors in prior work [5]. These
components use bit serial information processing and
transmission. This means the operands are transmitted
and processed in time division. The LSB is transmitted
as the first bit, because carry most propagates from LSB
to MSB in arithmetic operations. Bit serial signal
processing reduces the complexity and logic effort

significantly at a similar performance compared to bit
parallel signal processing.
However non linear operations, as a division, are
difficult to implement, usually a look-up-table is used.
To avoid this and to gain experience of processors
implemented within an FPGA, a processor core is used
for implementation of the adaptation process. For this
example the free i8051 core from the Dalton project [5]
comes into operation. This core is equal to the original
i8051 from Intel. The processor reads x∆ , converts it to
a floating point number and computes the gains. Since
the gains have a limited range (I0 K 10< < and

P10 K 0− < <), see simulation, eight bit integers are used

for their representation. They are fed to the controller
via the processor’s ports.
The controller uses these gains for the computation of
an appropriate value of the controlled variable.
The sampling period of the slower changing car’s speed
is 10 ms, compared to 1 ms for the control deviation.
The processor core needs about 1400 FlipFlops,
however the majority of these FFs is used to store the
program code. The necessary PID controller utilizes
only about 200 FFs. This limited need for logic enables
the circuit to fit in a small XILINX-FPGA [8].

7 Conclusion

The paper shows the possibilities offered by modern
FPGA hardware and development tools for the
implementation of fast and complex control algorithms.
The high amount of logic of today’s FPGAs allows the
integration of processor cores to run slow but complex
algorithms in software together with high speed
hardware algorithms. This new degree of freedom in
balancing the parts that are implemented in hardware or
software respectively, together with the possibility to
reconfigure hardware structures as easily as software,
will lead to a complete new generation of control
systems. The example presented in this paper, only
gives a first impression of the ideas that can be realized
now.

References

[1] Paul Master: The Age of Adaptive Computing Is
Here, LNCS 2438, p. 1 ff.

[2] Andre DeHon, John Wawrzynek: Reconfigurable
computing: what, why, and implications for design
automation, Proceedings of the 36th ACM/IEEE
conference on Design automation conference,
1999, ISBN 1-58133-109-7, p. 610 – 615, New
Orleans, Louisiana, United States, ACM Press.

[3] Reinemann, Th.; Kasper, R.: High Speed
Implementation of Controllers and Filters for
Mechatronic Systems; http://www.techonline.com/
community/home/14817, TechOnline

[4] MentorGaphics: HDL Designer Series,
http://www.mentor.com/hdldesigner/index.cfm?mo
de=fpga

[5] Kasper, Roland; Reinemann, Thomas: Gate level
implementation of high speed controllers and
filters for mechatronic systems Mechatronic
Workshop 2000; Krakau;

[6] Foto Digital Service: http://www.foto-
digital.de/glossar_c.html

[7] University of California Dept. of Computer Science
Dalton Project
http://www.cs.ucr.edu/~dalton/8051/

[8] Auer, A; Rudolf, D. J.: FPGA
Feldprogrammierbare Gate Arrays; Huethig;
Heidelberg; 1995

